In the early years of the oil industry, fire in a storage tank was a common occurrence. Virtually all products were stored in cone roof tanks built of riveted steel plates and the roof was often constructed with wood and tar coated paper. Tank fires were common especially after a lightning storm. This costly experience gradually led to improvements in better codes and guidelines for handling storage tank fires. Floating roof tanks were adopted for low flash point petroleum products and proved to be a most reliable method of protection against losses due to fires. The less volatile products with higher flash points continue to be stored in welded steel cone roof tanks.

As the frequency of fully involved storage tank fires decreases to a more acceptable level, the size of fire, when it happens, becomes larger due to the increase in tank size and capacity. It is quite common to see tanks with diameters in excess of 328 ft. (100 meters) capable of storing a million barrels of product.

One practical method to protect flammable liquid storage tanks from fire is with a fixed or a semi-fixed foam fire protection system. When engineered, installed and maintained correctly, these systems will give many years of reliable service. The foam system can be used for fire prevention, control or direct extinguishment of any flammable or combustible liquid fire within the tank.

To select the correct foam system, it is necessary to understand the following systems:

Fixed System is a complete installation piped from a central foam station, discharging through fixed discharge devices on the hazard being protected? Foam proportioning components are permanently installed.

Semi Fixed System is an installation where the hazard is equipped with fixed discharge device(s), which connect to piping that terminates a safe distance from the hazard, normally outside the dike wall. Foam producing materials are transported to the scene after the fire starts and are connected to the piping.

Listed below are types of tanks commonly used for the storage of combustible or flammable liquids.
- Cone roof tank
- Open top floating roof tank
- Internal floating roof tank/covered floating roof

Cone Roof Storage Tank has vertical sides and is equipped with a fixed cone-shaped roof that is welded to the sides of the tank. Tanks that have been designed in accordance with API standards have a weak seam at the joint where the roof and sides meet. In the event of an internal explosion, the roof separates and blows off leaving the tank shell intact. This system allows the tank to retain its contents and any resulting fire will involve the full surface of the exposed flammable liquid.

Open Top Floating Roof Storage Tank is similar to the cone roof tank in construction but with the exception that it has no fixed roof. A pontoon type roof floats directly on the flammable liquid surface. This floating roof has a mechanical shoe or tube seal attached to its full perimeter. The rim seal covers the space between the floating roof and the tank shell (side wall).

Internal Floating Roof/Covered Floating Roof Storage Tank is a combination of both the cone roof and the open top-floating roof tank? The tank has a cone roof but with the addition of an internal floating roof or pan that floats directly on the fuel surface. The open vents in the tank sidewalls just beneath the roof joint can identify this type of tank. If the internal floating roof is other than a steel double deck or pontoon type, the fire protection system should be designed for full surface fires (similar to cone roof tanks). For the double deck or pontoon internal roofs of steel construction, a design for sealed area protection may be permitted (same as open floating roof tanks).

Small quantities of flammable liquids are sometimes stored in horizontal style tanks, which normally sit on saddles or in underground storage facilities. This section applies only to the three major types of tanks as listed above.
IDENTIFY THE FLAMMABLE LIQUID

There are two basic classifications of flammable and combustible liquids:

- Hydrocarbon (non water miscible)
- Polar Solvent (water miscible)

Hydrocarbons include non water-soluble petroleum liquids such as crude oil, gasoline, jet fuels, fuel oils, etc. Polar solvents include water soluble liquids such as alcohols, ketones, esters etc.

All Chemguard U.L. Listed and standard grade foam concentrates are suitable for use on hydrocarbon fuel fires or spills. Only Chemguard U.L. Listed and standard grade alcohol resistant AR-AFFF concentrates are suitable for use on polar solvent fuel fires or spills.

NOTE: Pure MTBE is only slightly water miscible (approx. 4% - 6%).

FLAMMABLE AND COMBUSTIBLE LIQUIDS PER NFPA 30

Flammable Liquid means liquid having a flash point below 100°F (37.8°C) and having a vapor pressure not exceeding 40 psi (276 kpa)(absolute) at 100°F (37.8°C) shall be known as a Class I liquid. Class I liquids shall be subdivided as follows:

- **Class IA** includes those having flash points below 73°F (22.8°C) and having a boiling point below 100°F (37.8°C).
- **Class IB** includes those having flash points below 73°F (22.8°C) and having a boiling point above 100°F (37.8°C).
- **Class IC** includes those having flash points at or above 73°F (22.8°C) and below 100°F (37.8°C).

Combustible Liquid means liquid having a flash point at or above 100°F (37.8°C). Combustible liquids shall be subdivided as follows:

- **Class II** includes liquids with having flash points at or above 100°F (37.8°C) and below 140°F (60°C).
- **Class IIIA** includes liquids with a flash points at or above 140°F (60°C) and below 200°F (93.3°C).
- **Class IIIB** includes liquids with having flash points at or above 200°F (93.3°C).

FIRE PROTECTION OF STORAGE TANKS

U.L. has established two different types of foam discharge outlets:

Type II Discharge Outlet - A fixed device that delivers foam onto the burning liquid and partially submerges the foam and produces restricted agitation of the surface. Examples of this type of device are Foam Chambers and Foam Makers.

Type III Discharge Outlet - A fixed or portable device that delivers foam in a manner that causes the foam to fall directly onto the surface of the burning liquid in such a way that causes general agitation. Examples of this type of device are Hose Stream Nozzles and Monitors.

Two basic methods of fire protection systems for storage tanks:

- Sub-surface Base Injection
- Over the Top - (Subdivided as follows) Foam Chambers, Foam Makers, Portable Foam Monitors and Foam Tower

SUB-SURFACE BASE INJECTION

The sub-surface method of fire protection produces foam with a HBFPM located outside the storage tank. This system delivers the expanded foam mass through piping into the base of the tank. The pipe may be an existing product line or can be a dedicated fire protection foam line. The expanded foam entering the tank through a discharge outlet is injected into the flammable liquid. The discharge outlet must be a minimum of 1 ft. above any water that may be present at the base of the tank. The foam will be destroyed if injected into the water layer. When injected into the fuel, the foam will rise through the fuel and form a vapor tight foam blanket on the fuel surface.

Advantages of Sub-Surface

- The rising foam can cause the fuel in the tank to circulate which can assist in cooling the fuel at the surface.

- If there is an explosion and fire that could damage the top of the tank, the sub-surface injection system is not likely to suffer damage

- The discharging foam is more efficiently directed to the fuel surface without any interruption from the thermal updraft of the fire.
Disadvantages of Sub-Surface

- CANNOT be used in storage tanks containing polar solvent type fuels or products that require the use of AR-AFFF type foam concentrates
- Not recommended for use in either Floating Roof or Internal Floating Roof type tanks.
- Caution must be used so that the maximum foam inlet velocity is not exceeded; otherwise, excessive fuel pickup by the foam as it enters the tank will be experienced.
- Not to be used for protection of Class 1A hydrocarbon liquids

HIGH BACK PRESSURE FOAM MAKER

The HBPFM device is mounted in the foam line used to aspirate the foam solution before it is discharged into the storage tank base. It will typically give an expansion ratio of between 2:1 and 4:1. The device is capable of discharging against considerable backpressure, which can be as high as 40% of the operating pressure. The backpressure is an accumulation of head pressure in the fuel inside the storage tank and any friction loss between the foam maker and the tank. A minimum of 100-psi inlet pressure into the HBPFM is normally required to ensure correct operation. The foam velocity through the piping to the tank from the HBPFM is very critical. With flammable liquids, the foam velocity entering the tank should NOT exceed 10 ft. per second and with combustible liquids the foam velocity should NOT exceed 20 ft. per second.

Following chart shows the minimum discharge times and application rates for sub-surface application:

<table>
<thead>
<tr>
<th>Hydrocarbon Type Fuel</th>
<th>Minimum Discharge Time</th>
<th>Minimum Application Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash point between 100°F and 140°F (37.8°C and 93.3°C)</td>
<td>30 min.</td>
<td>0.10 gpm / ft. 4.1 L/min./m</td>
</tr>
<tr>
<td>Flash point below 100°F (37.8°C) liquids heated above their flash points.</td>
<td>55 min.</td>
<td>0.10 gpm / ft. 4.1 L/min./m</td>
</tr>
<tr>
<td>Crude Petroleum</td>
<td>55 min.</td>
<td>0.10 gpm / ft. 4.1 L/min./m</td>
</tr>
</tbody>
</table>

NOTE: The maximum application rate shall be 0.20 gpm / ft. (8.1 L/min./m).

FOAM CHAMBERS (TYPE II DISCHARGE DEVICE)

The Foam Chamber is normally used on cone roof storage tanks. The chamber is bolted or welded on the outside of the tank shell near the roof joint. A deflector is mounted on the inside of the tank so that the discharging foam from the foam chamber will be diverted back against the inside of the tank wall.

The foam chamber is mounted on the cone roof storage tank wall shell in a vertical position just below the roof joint, or approximately 8" to 12" down from the roof joint to the center point of the foam chamber outlet. In sequence Chemguard Models FC 2.5, 3, 4 and 6 foam chambers are to be mounted from approx. 8" to approx. 12" down from the roof joint. When the foam chamber is mounted correctly, the internal glass seal of the chamber will be just slightly higher in elevation than the roof joint on the storage tank. Each foam chamber mounted on a cone roof storage tank SHOULD have its own individually valved riser supplying the foam solution from outside the dike area. For correct operation, a minimum of 40 psi is required at the inlet to the foam chamber.

FOAM MAKERS (TYPE II DISCHARGE DEVICE)

The foam maker is normally used to aspirate foam solution before being discharged inside a dike (bund) area or when used with external floating roof tanks to supply foam to the rim seal area.

The discharge pipe down stream of the foam maker is sized to slow the velocity of the expanded foam and shaped to deflect the foam back against the inside of the dike wall, onto a splash board, or onto the tank shell wall when used for floating roof seal protection. The splashboard is to be mounted above the top of the floating roof tank. The correct size discharge pipe from the foam maker should be installed per the information supplied in the dike protection system design information.

When mounted on a storage tank or used in a dike protection system, the foam maker can be mounted in either a horizontal or a vertical position without any detrimental effect on foam performance. It is recommended that a minimum 12" length of straight pipe be installed upstream from the foam maker during the installation.

When using the Chemguard Model CGFM 1.5 foam maker for a dike fire protection system, a 3"
diameter pipe with minimum length of 28" and a maximum of 100" must be connected to the foam maker outlet (down stream side). This length of discharge pipe allows the correct foam expansion to take place and slows the discharge velocity. The CGFM 2.5 Foam Maker requires a length of 4" pipe to be connected to the discharge side of the maker. This length of pipe should also be a minimum of 28" but can have a maximum length of 120". The discharge pipe in both instances should be directed back against the inside wall of the dike. This installation allows a more gentle application to the flammable liquid within the dike and lessens the submergence of the foam.

Criteria for sizing a system for a cone roof tank

1. Identify the fuel inside the tank
2. Type of foam concentrate to be used
3. Calculate the fuel surface area (TTR²)
4. Application rate
5. Type of discharge device required and quantity (based on fuel flash point and tank diameter)
6. Calculate discharge duration
7. Supplementary hose lines required and discharge duration
8. Quantity of foam concentrate required
9. Establish bill of materials

NOTE: To determine the quantity of foam concentrate in a given quantity of foam solution, use the following formula:

Multiply the foam solution by
x .01 if using a 1% type of concentrate
x .03 if using a 3% type of concentrate
x .06 if using a 6% type of concentrate

EXAMPLE:

Cone roof tank: 150 ft. diameter
Fuel: Gasoline
Foam Concentrate: 3% AFFF
Surface Area: 75x75' x 3.1417 = 17,672 sq. ft.
Application Rate @ .10 gpm per sq. ft. (Per NFPA 11) .10 x 17,672 sq. ft. = 1,767.2 gpm of foam solution required
Discharge Device: Foam Chamber, Qty. 4
Discharge Duration: 55 min. 1,767.2 x 55 = 97,196 gallons of foam solution x .03 = 2,915.88 gallons of 3% AFFF concentrate required.
Supplementary hose lines required: Qty. 3 (per NFPA 11) each minimum 50 gpm. tank dia. over 120 ft.

Hose line discharge duration: 30 min. (Per NFPA 11) Tank dia over 95 ft. 3 x 50 = 150 x 30 = 4,500 gal. of foam solution x .03 = 135 gallons of 3% AFFF. 3,051 (135+2,916) gallons of foam concentrate

A suitable bill of materials of major components for the above system using a bladder tank could be the following:

- 1 x 3,200 gallon horizontal style bladder tank
- 1 x 6" Between flange style ratio controller
- 4 x 6" foam chamber each with a flow rate of 395 to 1,050 gpm depending on incoming pressure
- 1 x 2-1/2" Threaded type ratio controller (For supplementary system).
- 3 x 50 gpm handline nozzles
- Foam concentrate

NOTE: This chart identifies the number of Foam Chambers required for the protection of a flammable liquid contained in a vertical cone roof atmospheric storage tank where the discharge device is attached to the tank. Where two or more outlets are required, the outlets are to be equally spaced around the tank periphery and each outlet is to be sized to deliver foam at approximately the same rate.

<table>
<thead>
<tr>
<th>Tank Diameter (or equivalent area)</th>
<th>Meters</th>
<th>Minimum Number of discharge outlets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 80 ft.</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>Over 80 ft. to 120</td>
<td>24 to 36</td>
<td>2</td>
</tr>
<tr>
<td>Over 120 ft. to 140</td>
<td>36 to 42</td>
<td>3</td>
</tr>
<tr>
<td>Over 140 ft. to 160</td>
<td>42 to 48</td>
<td>4</td>
</tr>
<tr>
<td>Over 160 ft. to 180</td>
<td>48 to 54</td>
<td>5</td>
</tr>
<tr>
<td>Over 180 ft. to 200</td>
<td>54 to 60</td>
<td>6</td>
</tr>
</tbody>
</table>

It is suggested that for tanks above 200 ft. (60 m) in diameter at least one additional discharge outlet be added for each additional 5,000 sq. ft. (465 sq. m.) of liquid surface or fractional part.

This chart indicates the number of SUPPLEMENTARY hose streams required for various size tanks. Each hose stream must be capable of a minimum flow rate of 50 gpm of foam solution.

<table>
<thead>
<tr>
<th>Diameter of Largest Tank</th>
<th>Minimum # of hose streams req'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 65 ft. (19.5 m)</td>
<td>1</td>
</tr>
<tr>
<td>65 to 120 ft. (19.5 to 36 m)</td>
<td>2</td>
</tr>
<tr>
<td>Over 120 ft. (36 m)</td>
<td>3</td>
</tr>
</tbody>
</table>

This chart shows the Minimum discharge time and
application rate for Type II fixed foam discharge devices on Cone Roof storage tanks.

<table>
<thead>
<tr>
<th>Hydrocarbon Type</th>
<th>Application Rate</th>
<th>Discharge Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash point between 100ºF and 140ºF</td>
<td>0.10 gpm/ft.</td>
<td>30 min.</td>
</tr>
<tr>
<td>(37.8ºC and 93.3ºC)</td>
<td>4.1 L/min./m</td>
<td></td>
</tr>
<tr>
<td>Flash point below 100ºF</td>
<td>0.10 gpm/ft.</td>
<td>55 min.</td>
</tr>
<tr>
<td>(37.8ºC) or liquids heated above their flash points</td>
<td>4.1 L/min./m</td>
<td></td>
</tr>
<tr>
<td>Crude Petroleum</td>
<td>0.10 gpm/ft.</td>
<td>55 min.</td>
</tr>
<tr>
<td></td>
<td>4.1 L/min./m</td>
<td></td>
</tr>
</tbody>
</table>

Flammable liquids having a boiling point of less than 100ºF might require higher rates of application. These should be determined by test.

For high-viscosity liquids heated above 200ºF, lower initial rates of application of foam may be desirable to minimize frothing and the subsequent expulsion of the stored liquid from the storage tank. Good judgment should be used in applying foams to tanks containing hot oils, burning asphalts or burning liquids that have boiling points above the boiling point of water.

The above table includes gasohols and unleaded gasolines containing no more than 10% oxygenated additives by volume. Where these additives exceed 10% by volume, or where the flammable liquid is a polar solvent or water miscible product, fire protection for polar solvents and water miscible products must be used, such as Chemguard CUG 3% AR-AFFF or other AR-AFFF concentrate. The minimum discharge duration is 55 minutes.

The following chart indicates the minimum operating time of the supplementary hose stream(s) for various size tanks.

<table>
<thead>
<tr>
<th>Diameter of Largest Tank</th>
<th>Minimum Operating Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 35-ft. (10.5 m)</td>
<td>10 min.</td>
</tr>
<tr>
<td>35 to 95 ft. (10.5 to 28.5 m)</td>
<td>20 min.</td>
</tr>
<tr>
<td>Over 95 ft. (28.5 m)</td>
<td>30 min.</td>
</tr>
</tbody>
</table>

Below is an equipment list using a Foam Pump Skid assembly for a 150 ft. dia. tank containing gasoline.

- 1 x Atmospheric Foam Concentrate Storage Tank 3100 Gallons
- 1 x Electric powered Foam Pump Proportioning Skid with prepipped 6” ratio controller (Foam Chambers) and prepipped 2 1/2” ratio controller (Supplementary Hose Lines)
- 4 x Model FC4 or FC6 Foam Chambers
- 3 x 50 gpm Handline nozzles
- 3,051 x Gallons 3% AFFF (plus any additional for testing of the system)

NOTE: When protecting multiple storage tanks the foam system is to be sized to protect the single largest hazard.

Figure 9: Depicts a manual foam pump skid system showing all necessary piping, valves, discharge devices, ratio controller, foam pump and foam storage tank for the above system.

Figure 10: Shows a Cone Roof Storage Tank with a Semi-Fixed Foam System.

The following example shows the foam system requirements for seal protection of a 150 ft. diameter open top floating roof tank.

Type of Tank: Open Top Floating Roof Tank
Type of Fuel: Gasoline
Foam Dam installed on roof: Yes - 2 ft. from tank wall and 2 ft. in height
Sq. ft. area of annular ring: 930 sq. ft.
Application Rate: .30 gpm per sq. ft. (Per NFPA 11). 30 x 930 sq. ft. = 279 gpm of foam solution required.
Discharge Device: Foam Makers discharge duration is 20 min.
279 x 20 = 5580 gallons of foam solution
5580 x .03 (3% AFFF) = 167.4 gallons of foam concentrate
Foam Makers: Qty. 6 (Per NFPA 11)

Add supplementary hose lines per example for Cone Roof Tank with Foam Chambers.

NOTE: The number of fixed foam discharge points on an open top floating roof tank is determined by the circumference of the tank. The maximum spacing between discharge points is 40 ft. (12.2 m) of tank circumference when using a 12” (305 mm) high foam dam and every 80 ft. (24.4 m) of tank circumference when using a 24” (610 mm) high foam dam. In accordance with NFPA 11 Appendix B Storage Tank Protection Summary.

FOAM DAM DESIGN - The foam dam should be circular and constructed of at least No. 10 US Standard Gage Thickness (.134 in./3.4 mm) steel plate. The dam is to be welded or otherwise securely fastened to the floating roof. The foam dam is designed to retain foam at the seal area at a
sufficient depth to cover the seal area while causing the foam to flow laterally to the point of seal rupture. Dam height is to be at least 12" (305 mm) and should extend at least 2" (51 mm) above any metal secondary seal or a combustible secondary seal using a plastic foam log. It is to be at least 2" (51 mm) higher than any burnout panels in metal secondary seals. Foam dams are to be at least 1 ft. (0.3 m) but no more than 2 ft. (0.6 m) from the edge of the floating roof.

Foam solution and rain water is to be drained by, slotting the bottom of the dam on the basis of 0.04 sq. in. of slot area per sq. ft. (278 mm sq./sq. m) of diked area while restricting the slots to 3/8 in. (9.5 mm) in height. Excessive dam openings for drainage should be avoided to prevent loss of foam through the drainage slots.

SUB-SURFACE SYSTEM

Sub-surface injection of foam is generally not recommended for fuels that have a viscosity greater than 2,000 ssu (440 centistokes) at their minimum anticipated storage temperature.

Example:
Cone Roof Tank: 80 ft. diameter
Fuel: Gasoline
Foam Concentrate: 3%-6% AR-AFFF
Surface Area: 40' x 40' x 3.1417 = 5,026.7 sq. ft.
Application Rate: .10 gpm per sq. ft. (.10 x 5,027 sq. ft. = 502.7 gpm of foam solution
Discharge Duration: 55 min.
Foam Concentrate: 503 x 55 x .03 = 829.95 gallons
Discharge Device: Qty 1 High-Back Pressure FM
Discharge outlets inside tank: Qty 1 (Tank 80 ft. or less) Per NFPA 11
Supplementary hose lines for Cone Roof Tank

The following chart shows the number of discharge outlets required inside the tank.

<table>
<thead>
<tr>
<th>Tank Diameter</th>
<th>Number of Discharge</th>
<th>Outlets Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 80 ft. (24 m)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Over 80 to 120 ft. (24 -36 m)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Over 120 to 140 ft. (36-42 m)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Over 140 to 160 ft. (42-48 m)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Over 160 to 180 ft. (48-54 m)</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Over 180 to 200 ft. (54-60 m)</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Over 200 ft. (60 m)</td>
<td>6</td>
<td>Plus 1 outlet for each additional 5,000 sq. ft. (465 sq. m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plus 1 outlet for each additional 7,500 sq. ft. (697 sq. m)</td>
</tr>
</tbody>
</table>

Equipment list for the above example using bladder tank foam supplied foam system.
- 1 x 900 Gallon vertical style bladder tank
- 1 x 2¼" Threaded type ratio controller (for supplementary hose lines)
- 1 x 4" Between flange style ratio controller
- 1 x 500 gpm High Back Pressure Foam Maker
- Supplementary handline nozzles and foam concentrate

Determining Number of Discharge Outlets for Sub-surface Base Injection

The number of discharge outlets required is based on the tank diameter and the flash point of the fuel as shown in the above chart.

Foam Monitors and Handlines

Monitors are not to be considered as the primary means of protection for fixed roof tanks over 60 ft. in diameter. Foam handlines are not to be considered as the primary means of protection for tanks over 30 ft. in diameter or for those over 20 ft. in height.

Application Rates Using Monitors/Handlines

The minimum foam solution application rate is based on the assumption that all discharging foam will reach the area being protected. In considering actual solution flow requirements, consideration should be given to potential foam losses from climatic conditions, thermal updraft of the fire, etc.

The following chart shows application density and duration for monitors and handlines on tanks containing hydrocarbons.

<table>
<thead>
<tr>
<th>Hydrocarbon Type</th>
<th>Minimum Application Rate gpm/ft² (L/min./m²)</th>
<th>Minimum Discharge Time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash point between 100°F and 140°F (37.8°C and 93.3°C)</td>
<td>0.16</td>
<td>6.5</td>
</tr>
<tr>
<td>Flash point below 100°F (37.8°C) or liquids heated above their flash point</td>
<td>0.16</td>
<td>6.5</td>
</tr>
<tr>
<td>Crude Petroleum</td>
<td>0.16</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Included in the above table are gasohols and unleaded gasolines containing no more than 10 percent of an oxygenated additive by volume.
On tanks containing water miscible/polar solvent flammable liquids the recommended foam application duration is 65 minutes.

Flammable liquids having a boiling point less than 100°F and products that have been burning for some time can develop a heat layer which might require foam solution application rates as high as .2 or .25 gpm per sq. ft.

Where monitors or handlines are used to protect storage tanks containing polar solvent or water miscible liquids the discharge duration shall be a minimum of 65 minutes at the recommended application rate.
EXAMPLE OF BALANCE PRESSURE PUMP SKID WITH TWO PROPORTIONERS

System 1: Foam solution to manifold supplying 4 foam chambers on cone roof tank.

System 2: Foam solution to separate storage tank system if required.

Pressurized Vacuum Vent
Atmospheric Tank

Flush Outlet Connection
Pressure Relief Valve
Flush Inlet Connection
Strainer
Foam Concentrate Pump

Balance Valve

Water Inlet
Ratio Controller
FIGURE 10

SEMI-FIXED FOAM SYSTEM WITH MOBILE APPARATUS SUPPLYING THE FOAM SOLUTION

Aerated Foam

Foam Chamber

Foam Chamber
Topside Application
on Cone Roof Tank

OS & Y Valve

Foam Solution
from Mobile Apparatus

Dike Wall

FUEL